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Abstract

Amethod is described for monitoring a single delamination in a laminated composite plate. The dynamic response of the

structure is obtained via the electromechanical impedance of a piezoelectric transducer cemented onto the structure. We

focus here on the coupling with bending modes using thin devices which can be embedded in the material during the

manufacturing process. A model including the delamination as well as the transducer is presented. The geometrical

parameters of the delaminated zone are identified by comparing the modal parameters calculated from impedance

measurements with those obtained using our model. Upon applying this method of identification to a test laminated beam,

the length and position of several delaminations were estimated to within 15%.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The anisotropy and lack of homogeneity of composite materials result in various and complex damage
mechanisms. In a composite structure, one can observe micro-cracking (micro-decoherence processes and
micro-cracks), ply fractures (transverse cracks), delaminations, and laminate fractures. Many authors have
proposed models for predicting the evolution of these damage processes (see Refs. [1,2]). Since these damage
mechanisms are interrelated, however, a 3D modelling procedure is often necessary (see Ref. [3]). Approaches
of this kind are not easily applicable in industrial context. Moreover, in the case of classical static or fatigue
loading conditions, the uncertainties about the boundary conditions and the imperfections of the model can
have considerable effects. In order to reduce the need for wide safety margins and optimise structure design,
suitable methods have therefore become necessary for detecting and characterising each type of damage. With
methods of this kind, predictive models could be used to determine whether the damage is still acceptable or
whether repair operations are required.

In order to reduce time-consuming ground maintenance work, we have been investing the possibility of an
onboard system of measurement. Several sensors can be used to carry out measurements of this kind, such as
piezoelectric transducers (see Ref. [4]), the composite carbon fibre components themselves (electrical resistance
measurements) (see Refs. [5–7]), and optical fibres (see Refs. [8,9]). We decided to use piezoelectric transducers
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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for several reasons. First, Lin and Chang (see Ref. [10]) have established that thin piezoceramic layers can be
embedded in composite laminates during the manufacturing process without degrading the structural integrity
of the host composite structures. In addition, devices of this kind make it possible to perform both ultrasonic
and modal analysis. Many authors have used thin piezoelectric transducers to generate and receive
Lamb’s waves in composite plates in order to monitor an impact or other causes of local degradation (see
Refs. [11,12]). These devices have been less commonly used to determine the modal response of a structure,
although modal analysis has been used for several decades to detect and characterise damage in structures (see
Refs. [13–16]). Diaz Valdes and Soutis [17] used thin piezoceramic elements and measured resonance peak
shifts in order to detect and monitor the evolution of a delamination process in a composite beam. These
authors could only assess the defect qualitatively because they did not use a model describing the
delamination.

Ling et al. [18] proposed a model for identifying a delamination. Their model allow to compute eigenvalues
for a delaminated composite beam, but, as actuators and sensors are not taken into account, their model
cannot estimate the amplitudes of the modes.

Keilers and Chang [19,20] proposed a model taking into account the sensors and actuators (piezoceramic
transducers). In this way, they can perform a parametric identification of a delamination in composite beam.
But their model was limited to symmetrical beams (two transducers on opposite faces and a delamination on
the neutral axis).

In this paper, we propose a general method which does not require making any assumptions about the
symmetry of the laminate, the delamination or the position of the transducer.

First we present the method of measurement used for this purpose and describe a general model which was
specially adapted to the use of a thin piezoelectric transducer for analysing the electromechanical coupling.
In the second part, an electromechanical model based on laminate theory is developed for dealing with
delaminated beam structures. In the third part, this model is used to characterise a delamination.
Experimental and simulated modal parameters are obtained for a few modes, using a mean squares estimate
technique. Comparisons between modal parameters make it possible to determine the geometrical parameters
characterising the delamination.
2. Electromechanical impedance measurement

2.1. General principle

Mechanical impedance measurements have been used for several decades to determine the modal response
of structures. These measurements generally involve the use of electrodynamic or hydraulic shakers as
actuators. Accelerometers or laser vibrometers are then used to detect the response of the structure under
investigation.

As our aim was to make embedded measurement, we used thin actuators and receivers which could be
included in the structure during their manufacture. Some authors proposed to use fibre optic sensors to
measure vibration modes of structures (see Ref. [18]). This technique needs an actuator for generating
vibration, and seems therefore unpractical except in a laboratory context. Other authors proposed to use
piezoelectric transducers in the form of thin discs (see Refs. [4,10]). These transducers can play the role of both
actuator and receiver. A single transducer can thus be used to carry out electromechanical impedance
measurements.
Frequency

v=V cos (w)
imposed

i=I cos (wt+�)
measured Impedance Z= V

I
 

Carbon/epoxy laminate

Fig. 1. Principle of the electromechanical impedance measurement.
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Fig. 2. Example of an electromechanical impedance measurement. Real part and imaginary part.

Fig. 3. Characteristics of the laminated beam made of 16 carbon/epoxy unidirectional plies [451, �451, 901, 01]2S.
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Fig. 1 shows the basic idea underlying this method of measurement: a sinusoidal tension is fed between the
terminals of the transducer, and the electrical current reaching the transducer is measured. Fig. 2 gives an
example of an electromechanical impedance measurement carried out on the laminated beam presented in
Fig. 3. The real part of the impedance shows a series of peaks corresponding to the bending modes of the
structure. We can also see the capacitive behaviour of the piezoelectric material, which results in a linear
evolution (in log–log scales) on the impedance versus frequency graph. This measurement therefore provides
information about both the electrical behaviour of the piezoelectric disc and the mechanical behaviour of the
whole structure.
2.2. A general electromechanical model for thin transducers

The aim of this part of the study was to develop a simple linear model which could be used to analyse the
electromechanical coupling. This analysis will subsequently be used to process the impedance measurements in
the last part of the study.

Ling and Xie [21] proposed a method of extracting the mechanical impedance from the impedance
measurement using a piezoceramic inertial actuator. These authors assumed the transducer to be attached at a
single point to the structure because an inertial transducer generates a force perpendicular to the contact
surface. Here we used thin transducers mainly generating forces running parallel to the contact surface. The
force distribution over the contact surface consequently has to be taken into account. We therefore decided to
develop a general model assuming only that the thickness of the piezoelectric transducer is much smaller than
its other dimensions.

Let us consider the piezoelectric structure described in Fig. 4. We take an electric potential V equal to zero
at the negative terminal. We want to calculate the electrical admittance defined by

Y ¼
I

Vþ
, (1)
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Fig. 4. Piezoelectric structure.

C. Bois et al. / Journal of Sound and Vibration 299 (2007) 786–805 789
where V+ is the electric potential assumed to be uniform over the positive terminal and I is the electrical
current flowing into the positive terminal. Assuming that a sinewave excitation is reaching the transducer with
an angular frequency o, I can be calculated straightforwardly from the surface electric charge displacement Q

of the positive terminal:

I ¼

Z
þ terminal

_Qds ¼ jo
Z
þ terminal

Qds. (2)

In our application, the piezoelectric material is quite thin in comparison with its width (thickness 0.15mm,
width 10mm). The electrical field E and the electric charge displacement D are therefore almost parallel to the
x3 direction. In addition, we can assume the electrical field to be constant with x3, leading to

V ¼
x3

hp

Vþ expðjotÞ, (3)

E1 ¼ 0; E2 ¼ 0 and E3 ¼
Vþ expðjotÞ

hp

, (4)

where hp is the thickness of the piezoelectric transducer.
An arbitrary finite elements discretisation procedure was used in order to obtain an analytic expression for

the admittance.
Appendix A gives details of the method used to calculate the discretised equations giving the electro-

mechanical problem, which lead to the following equation:

ðK� o2MÞU� PVþ ¼ 0;

PTUþ CVþ ¼
I

jo
;

8><
>: (5)

where U is the column vector of nodal displacements, K the stiffness matrix, M the mass matrix, P the column
matrix of electromechanical coupling, and C the electric capacity. C is defined by

C ¼
S��33
hp

, (6)

where S is the area of the positive terminal, and ��33 the dielectric constant at constant strain field in the 3–3
direction.

Because of our electrical assumption, the only electrical degree of freedom (dof) is V+, and P is thus a
column matrix.

By substituting U into Eq. (5) we obtain

½PTðK� o2MÞ�1Pþ C�Vþ ¼
I

jo
. (7)
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Eqs. (1) and (7) can be used to determine the admittance Y:

Y ¼ jo½PTðK� o2MÞ�1Pþ C�. (8)

From the expression for the admittance given by Eq. (8), we can extract what we call the total capacity CT:

CT ¼ PTðK� o2MÞ�1Pþ C. (9)

In this expression, we can see the dynamical stiffness matrix K� o2M. As in the case of the mechanical
impedance, the scalar values measured makes it possible to trace the dynamical behaviour of the whole
structure. P serves as a projector by translating the electromechanical coupling (Newtons/Volt). It depends on
the position of the transducer and the piezoelectric coefficients. C is theoretically constant, but in the
experimental data, C changes slightly with the frequency (see Ref. [22]).
3. Analytic model for a delaminated beam with a piezoelectric transducer

Simplified models taking the presence of a piezoelectric transducer into account are already available (see
Ref. [23]). Most of the authors in question have modelled symmetrical beams, that is to say beams having two
transducers on opposite faces, in order to isolate the bending modes involved (see Refs. [18,24,25,28]).
Transducers are usually modelled by an actuator attached to the structure at two points (see Ref. [26]). To
obtain more accurate modelling, we have adapted the laminate theory by simulating a piezoelectric ply.
A similar approach has been used in the field of active vibrations control (see Ref. [27]). This approach, which
makes it possible to obtain an analytic model for beam structures, can be adapted to plate structures using the
finite elements method.

To model the delamination, one of the most usual methods consists in cutting out the structure in several
parts, in order to isolate the delamination (see Ref. [29]). The interface equilibrium equations then yield a
global model. Cho and Kim [30] have proposed a general formulation based on distribution theory, which
they applied to plates using the finite elements method.

Keilers and Chang [19] described a model accounting for both the transducer and the delamination, which
was valid only in the case of symmetrical beams. Here we therefore propose a more general model which is
suitable for general cases.

A previous study by one of the present authors (see Ref. [31]) was based on a classical beam theory (uniaxial
stress), applied to a quasi-isotropic laminate. This theory is not suitable for dealing with laminates, however,
as the anisotropy of composite materials and differences in orientation between the plies generate radial
stresses on the ply scale. This leads to a 5% error in the resonance frequencies, which can be avoided with the
more general model presented here.
3.1. Theory for piezoelectric laminates—application to bending modes of a composite beam

In plane stress, let us define the stress vector r and the strain vector e as follows:

r ¼

s11
s22
s12

2
64

3
75 and e ¼

�11

�22

2�12

2
64

3
75. (10)

In the case of an elastic, not piezoelectric material, the constitutive law can be written:

e ¼ Sr, (11)

where S is the flexibility tensor.
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For example, in the case of an orthotropic material:

S ¼

1

E1
�
n21
E2

0

�
n21
E2

1

E2
0

0 0
1

G12

2
66666664

3
77777775
, (12)

where E1 is the longitudinal Young’s modulus, E2 is the transversal Young’s modulus, G12 is the shear
modulus, and n21 is the Poisson’s ratio.

In the case of a piezoelectric material, the 3D constitutive laws are as follows, when the stress r and the
electrical field E are taken to be independent variables:

�kl ¼ SE
klijsij þ dklqEq, (13)

Dp ¼ dpijsij þ �
s
pqEq, (14)

where es is the dielectric tensor at constant stress field, SE is the flexibility tensor at constant electrical field,
and d is the corresponding piezoelectric coupling tensor.

With the same assumptions as those involved in Eq. (4), the constitutive laws given by Eqs. (13) and (14) can
be written in plane stress terms with an uniaxial electric field in the form:

e ¼ SErþ dE3, (15)

D3 ¼ dTrþ �s33E3, (16)

where

d ¼

d113

d223

d123

2
64

3
75. (17)

By extracting r from Eq. (15), we obtain

r ¼ ðSEÞ
�1
ðe� dE3Þ (18)

and by substituting it into Eq. (16), we obtain

D3 ¼ dTðSEÞ
�1eþ ð�s33 � dTðSEÞ

�1dÞE3. (19)
M0

u0

M

u

m0

m

x3

x3

Fig. 5. Kirchhoff–Love’s displacement field.
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Eqs. (18) and (19) are therefore the constitutive laws under plane stress conditions, where e and E3 are
independent variables.

We took a Kirchhoff–Love’s displacement field illustrated in Fig. 5, defined by

u ¼ u0 � x3gradðu
0
3Þ, (20)

where u0 is the displacement of the point m0.
The strain vector defined by Eq. (10) can then be written in the form:

e ¼ e0 þ x3K, (21)

with:

e0 ¼

u0
1;1

u0
2;2

u0
1;2 þ u0

2;1

2
664

3
775 and K ¼

�u0
3;11

�u0
3;22

�2u0
3;12

2
664

3
775. (22)

From these assumptions, we can calculate the dynamical bending equations for a piezoelectric laminated
beam.

Appendix B gives the details of these calculations, and defines the quantities AN, BN, R, l, N, M, PD, QD,
and JD. We end up with the following expression for the electric charge displacement:

D3 ¼ PD�011 þQDK11 þ JDE3 (23)

and two differential mechanical equations describing the longitudinal displacement u0
1 and the transversal

displacement u0
3:

u0
1;11 ¼

BN

AN
u0
3;111, (24)

Ru03;1111 � lo2u0
3 ¼ 0. (25)

Solutions of Eq. (25) can be written as

u0
3ðx1Þ ¼ a1 cosðOx1Þ þ a2 sinðOx1Þ þ a3 coshðOx1Þ þ a4 sinhðOx1Þ, (26)

with

O4 ¼
lo2

R
. (27)

The solution of Eq. (24) is therefore

u0
1ðx1Þ ¼

OBN

AN
½�a1 sinðOx1Þ þ a2 cosðOx1Þ þ a3 sinhðOx1Þ þ a4 coshðOx1Þ� þ a5x1 þ a6, (28)

a1, a2, a3, a4, a5 and a6 are constants calculated from the boundary conditions.
3.2. Accounting for the delamination using the transfer matrix method

As shown in Fig. 6, the beam is cut into several segments including all the various laminates. The aim here is
to write kinematic and dynamic continuity conditions between each of the segments. First we replace in the
expression for u0

3ðx1Þ and u0
1ðx1Þ the unknown coefficients a1, a2, a3, a4, a5, and a6 by the six kinematic node

variables defined in Fig. 7, in order to automatically satisfy the kinematic continuity conditions.
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The displacements u0
3ðx1Þ and u0

1ðx1Þ can therefore be written in the form:

u0
3ðx1Þ ¼

u0
3ð0Þ

u0
3ðLÞ

u0
3;1ð0Þ

u0
3;1ðLÞ

u0
1ð0Þ

u0
1ðLÞ

2
6666666664

3
7777777775

T

CLT
3

cosðOx1Þ

sinðOx1Þ

coshðOx1Þ

sinhðOx1Þ

x1

1

2
666666664

3
777777775
, (29)

u0
1ðx1Þ ¼

u0
3ð0Þ

u0
3ðLÞ

u0
3;1ð0Þ

u0
3;1ðLÞ

u0
1ð0Þ

u0
1ðLÞ

2
6666666664

3
7777777775

T

CLT
1

cosðOx1Þ

sinðOx1Þ

coshðOx1Þ

sinhðOx1Þ

x1

1

2
666666664

3
777777775
. (30)

Analytic expressions of CL3 and CL1 can be found in Ref. [22].
We can then express the dynamic equilibrium at each node: for example, let us write the equilibrium at

node n2:

N1
11ðn2Þ ¼ Nd1

11 ðn2Þ þNd2
11 ðn2Þ, (31)

M1
11ðn2Þ ¼Md1

11ðn2Þ þMd2
11ðn2Þ, (32)

M1
11;1ðn2Þ ¼Md1

11;1ðn2Þ þMd2
11;1ðn2Þ. (33)
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It is worth noting that the bending moments are all written at the same point; so the fact that each part of
the beam has its own neutral fibre is taken into account.

Constitutive laws (64) and displacement fields (29) and (30) make it possible to express the dynamic
equilibrium equations according to kinematic node variables. We thus obtain a 3nn linear equations system
where nn is the number of nodes. By solving this system of equations, we can calculate the displacement fields
depending on the electric potential V+ of the positive terminal. The solution fields are proportional to the
electric potential V+ because the model is linear.

3.3. Admittance calculation

The transducer admittance is defined by

Y ¼
I

Vþ
. (34)

We calculate the electrical current I from the electric charge displacement:

I ¼

Z
þ terminal

_D3 ds ¼ jo
Z
þ terminal

D3 ds ¼ job

Z npþ1

np

D3 dx1, (35)

where np and np+1 are the nodes at the transducer ends.
Eq. (23) can then be used to express I depending on the displacement field and the electrical field:

I ¼ job

Z npþ1

np

ðPDu0
1;1 �QDu0

3;11 þ JDE3Þdx1, (36)

I ¼ jobVþ PDDu0
1 �QDDu0

3;1 þ JD Lp

hp

� �
, (37)

where Lp is the length of the transducer, and Du0
1 and Du0

3;1 are defined by

Du0
1 ¼

u0
1ðnpþ1Þ � u0

1ðnpÞ

Vþ
; Du0

3;1 ¼
u0
3;1ðnpþ1Þ � u0

3;1ðnpÞ

Vþ
. (38)

We can therefore express the admittance as follows:

Y ¼ jo bðPDDu0
1 �QDDu0

3;1Þ þ JD bLp

hp

� �
. (39)

As in the case of the general electromechanical model, we can see that the expression for the admittance
contains an electrical term and a mechanical term. We can then express the total capacity CT as follows:

CT ¼ bðPDDu0
1 �QDDu0

3;1Þ þ JD bLp

hp

. (40)

4. Characterisation of the delamination by parametric identification

Characterisation of a defect using a parametric identification procedure requires the use of three tools:
�
 An efficient model reducing the computation time.

�
 A smooth cost function for quantifying the difference between experiments and simulations.

�
 A fast and reliable minimisation algorithm.
To obtain the first tool, we used the model presented in the previous part. This model accounts for both the
delamination and the transducer. Three parameters have to be identified: the length, the position, and the
depth of the delamination.
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To define the cost function, we compared the modal parameters of a few modes of the structure between
experiments and simulations. The first step consisted in extracting the modal parameters from the
electromechanical impedance. Next, a cost function based on resonance frequencies and mode amplitudes
yielded a robust identification procedure. We used a quadratic cost function, which had a single minimum for
all the cases that we considered, so we did not need to develop a specific minimisation algorithm as required in
other work [18].

4.1. Extracting modal parameters from electromechanical impedance measurements

The first stage in the procedure consists in analysing the admittance in order to obtain the modal response of
the structure and extract the modal parameters involved in each mode.

We assume each mode to be independent from the others, so that each mode is assimilated to a one dof
mechanical system. In the example presented in Fig. 2 this assumption is acceptable at frequencies lower than
10 kHz.

A 1 dof mechanical system of this kind is presented in Fig. 8. Eq. (8) can be used to calculate the expression
for the electrical admittance in the case of this simple system:

Y ¼ jo½Pðk þ jok� � o2mÞ�1Pþ C�. (41)

In this case, since P is a scalar, Eq. (41) gives

Y � joC ¼ P2 jo
k þ jok� � o2m

. (42)

This expression includes the mechanical admittance of a 1 dof mechanical system defined by

Y m ¼
_U

F
¼

jo
k þ jok� � o2m

. (43)

We can therefore now identify the modal parameters of each mode: the resonance frequency fr, the quality
factor Q, and the amplitude A, defined by

fr ¼
1

2p

ffiffiffiffi
k

m

r
; Q ¼

2pfrm

k�
; and A ¼

1

k�
. (44)

For this purpose, we use a high resolution technique developed by Le Roux and Herzog [32] based on a least
squares identification method. This method is based on an analytic solution, which makes it possible to
accurately estimate modal parameters, even with highly damped resonances. Fig. 9 gives the third mode
identified in the spectrum shown in Fig. 2. The total experimental capacity and its identification can be
compared in Fig. 10 and seem to be in excellent agreement. Since C varies slightly with the frequency, we have
plotted in Figs. 9 and 10 the evolution of Cd, which is the difference between CT and its static value.

4.2. Application to the characterisation of delaminations

The laminate studied here consisted of 16 unidirectional carbon/epoxy plies with the sequence [451, �451,
901, 01]2S. Six transducers were cemented to the beam with cyanoacrylate as shown in Fig. 11. We used
piezoelectric transducers obtained from inexpensive electronic buzzers, made of a 0.15mm thick PZT ply and
a 0.2mm thick steel ply. The characteristics of the materials are given in Table 1.
k + j�k∗

Fx
m

Ux

Fig. 8. One degree of freedom mechanical system.
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Table 1

Material properties

Material properties Composite measured data Piezoelectric (PZT) (see Ref. [33]) Steel

Elastic properties E1=E2=G12=n12 E1=E2=n12 E=n
(Gpa) 135/9/4/0.33 64.5/64.5/0.3 210/0.3

Damping coefficient: x x1=x2=x12 x1=x2=x12 x
E� ¼ Eð1þ jxÞ 0.002/0.02/0.03 0.001/0.001/0.001 0.001

Mass density (kg/m3) 1600 7500 7800

Permitivity: e33 (C/m/V) — 6.9� 10�9 —

Coupling term: d113 and d223 (m/V) — �5.54� 10�11 —

Ld

5 plies

11 plies

5 plies

11 plies Ld

180 mm

20 mm

180 mm

(a)

(b)

Fig. 12. Configurations of studied delamination. (a) Delamination at one end of the beam. (b) Delamination located inside the beam.
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The delamination is introduced between the 11th and 12th plies because 01/901 interface is brittle with
respect to delamination. The process is initiated by an unmoulding plastic film and increased using a very thin
blade. Two patterns of delamination were studied: one starting at one end of the beam, and the other one
occurring entirely inside the beam (Fig. 12).

The laminate was placed on two soft foam blocks in order to approximate free boundary conditions.
Measurements were performed with a Stanford spectrum analyser. The simulation was programmed in

Matlabs on a computer with a 2GHz processor and 512 Mo RAM. The computation time required to
process 300 frequency values was about 1 s.

The frequency range investigated, 100Hz–30 kHz, was chosen in order to include the first bending modes.
Several cost functions were tested, some of which were based only on resonance frequencies, and some only

on mode amplitudes. The final cost function was based on both resonance frequencies and mode amplitudes:

Fc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

f measured
ri � f simulated

ri

f measured
ri

 !2
vuut

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

Ameasured
i � Asimulated

i

Ameasured
i

 !2
vuut . (45)

The first four modes yielded a sufficiently large amount of information, while requiring a reasonable
computation time.

The results presented below were obtained using the 5th transducer, which was not placed near the region of
delamination. We checked that the delamination identification method worked with each of the six
transducers used: the amplitudes of the peaks in the impedance curves obtained with all the transducer were
very similar on the whole (see Ref. [22]). The reason for this similarity is that the global modes of the structure
reflect the defect, and can therefore be used to characterise it wherever the transducer is positioned, provided
that (as in our case) the size of the damage is significant in comparison with the size of the structure.
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4.2.1. Delamination at one end of the beam

In this case, only two parameters are used to characterise the delamination: the length and the depth of the
delaminated interface. Fig. 13 shows the influence of the length of the simulated delamination on the cost
function. The length of the actual delamination was 42mm and the transducer used was number 5. At each
delaminated interface, there is a clearly identifiable minimum which corresponds to a delamination length.
Interface numbers 9, 10, and 11 give the lowest minima and similar results: the length of the delamination
identified in all these cases was 37mm. The identified length can be compared with the actual length in Fig. 14.
The simulated delamination length using our method was underestimated by 10%, possibly due to the
presence of an adherence zone at the end of the delamination zone.

4.2.2. Delamination located inside the beam

In this case, three parameters can be said to characterise the delamination: the length, the position, and the
depth. Fig. 15 shows the influence of the length of the simulated delamination on the cost function when the
depth of the delaminated interface was fixed. The actual delamination length was 32mm, the distance between
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the end of the beam and the end of the delamination zone was 20mm, and the transducer used was number 5.
The cost function shows a clearly detectable minimum, which correspond to a 29.4mm long delamination and
a distance of 20mm between the end of the beam and the end of the delamination.

The identified lengths and actual lengths can be compared in Fig. 16. The simulated delamination length
was underestimated by 15% possibly due to the presence of two adherence zones at the beginning and end of
the delamination zone. It can be seen from Fig. 17 that the site at which the delamination occurred was
accurately estimated.

5. Conclusion and prospects

An in-situ method of measurement is described here for detecting and characterising a delamination process
in a composite structure. The method was applied to a beam structure. For this purpose, we developed an
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analytic model for a beam including a delaminated part and a transducer. Modal parameters were obtained
from the electromechanical impedance measurements and from simulations. These parameters were then
compared in order to determine the most appropriate model parameters. The size and position of the defect
were found to be accurately estimated in the cases tested, where the delamination was a large one (about 10%
of the total length of the structure).

Our research team is also working on the use of similar methods to detect micro-crack processes. The
initial results obtained show that damage of this kind does not significantly affect the modal parameters
in the frequency range used here to detect a delamination. The delamination monitoring will therefore
probably not be disturbed if multiple damage occurs in a composite material. However, this has not yet been
checked.

The detection range of a single sensor depends on the characteristics of the structure involved (its
dimensions, the boundary conditions, etc.), on the delamination configuration (open or closed), and on the
type of coupling which occurs. The latest simplified model could now be used to study the effects of these
parameters, and it is already a good candidate for dealing with a few specific industrial problems. In the first
stage, it is proposed to use this method to detect a delamination on the trailing edge of a helicopter blade: the
dynamic behaviour of this slim structure is quite simple, and the delamination usually propagates only along
the trailing edge. A 1D model should therefore suffice to deal with this problem.

Most industrial applications cannot be solved using 1D model, however. 2D models require a numerical
method, such as the finite elements method. Some authors have developed models including either a
delamination or a piezoelectric transducer, and we are also developing a finite element model based on the
discrete kirchhoff triangular (DKT) element procedure accounting for both the transducer and the
delamination. Obtaining an accurate and time-saving model is not the only problem which requires to be
solved. In the case of a 2D structure, the difficulty of characterising the delamination will depend on the mode
density and the coupling between the various modes.

Appendix A. Discretised equations for the electromechanical problem

Let us take r to denote the Cauchy stress tensor, u the displacement vector, and e the strain tensor
defined by

�ij ¼
1
2
ðui;j þ uj;iÞ. (46)
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In the variational form, the global mechanical equilibrium equation is

�

Z
O
sijd�ij dv ¼

Z
O
r
d2ui

dt2
dui dO 8du, (47)

where r is the density and du the virtual displacement.
In the variational form, the global electrical equilibrium equation is

Z
Op

DpdEp dv�

Z
þ terminal

QdV dv ¼ 0 8dV , (48)

where Q is a surface electric charge displacement and dV the virtual electric potential.
Using e and E as independent variables, the constitutive laws become:

Dp ¼ epkl�kl þ �
�
pqEq, (49)

sij ¼ KE
ijkl�kl � eijqEq, (50)

where ee is the dielectric tensor at constant strain field, KE is the stiffness tensor at constant electrical field, and
e is the corresponding piezoelectric coupling tensor.

We thus obtain the following global expressions solving the piezoelectric structure problem:

�

Z
O

KE
ijkl�kld�ij dvþ

Z
Op

eijqEqd�ij dv ¼

Z
O
r
d2ui

dt2
dui dO 8du, (51)

Z
Op

epkl�kldEpdvþ

Z
Op

��pqEqdEp dv�

Z
þ terminal

QdV dv ¼ 0 8dV . (52)

To express the admittance literally, let the displacement field discretised using the finite elements method:

uiðx1;x2;x3Þ ¼
Xn

p¼1

Npðx1;x2; x3ÞU
p
i , (53)

where U
p
i indicates the displacement of the node numbered p in the xi direction, Np the base function of the

node numbered p, and n the number of nodes.
To deal with the electric potential let us use the approximate forms of Eqs. (3) and (4).
In this way, we obtain the following equation:

ðK� o2MÞU� PVþ ¼ 0;

PTUþ CVþ ¼
I

jo
;

8><
>: (54)

where U is the column vector of nodal displacements, K the stiffness matrix, M the mass matrix, P the column
vector of electromechanical coupling, and C the electric capacity. C is defined by

C ¼
S��33
hp

, (55)

where S is the area of the positive terminal.



ARTICLE IN PRESS

ply # i

x3

hihi+1 x1

Fig. 18. Laminate description.

C. Bois et al. / Journal of Sound and Vibration 299 (2007) 786–805802
Appendix B. Theory for a piezoelectric laminate—Application to a laminated beam

We start calculating generalised forces: the axial and moment forces are defined by

N ¼

Z hnþ1

h1

rdx3 ¼
Xn

i¼1

Z hiþ1

hi

rdx3

� �
;

M ¼

Z hnþ1

h1

rx3 dx3 ¼
Xn

i¼1

Z hiþ1

hi

rx3 dx3

� �
;

8>>>><
>>>>:

(56)

where n is the number of plies. hi and hi+1 are defined in Fig. 18.
Using the constitutive law (18), we obtain

N ¼

Z hnþ1

h1

ðSEÞ
�1edx3 �

Z hnþ1

h1

ðSEÞ
�1 dE3 dx3;

M ¼

Z hnþ1

h1

ðSEÞ
�1ex3 dx3 �

Z hnþ1

h1

ðSEÞ
�1 dE3x3 dx3:

8>>>><
>>>>:

(57)

Using Kirchhoff–Love’s displacement field summarised in Eq. (21), Eq. (57) gives

N ¼ A e0 þ BK� FE3;

M ¼ B e0 þDK�GE3;

(
(58)

with

A ¼
Xn

i¼1

ðSE
i Þ
�1
ðhiþ1 � hiÞ; B ¼

Xn

i¼1

ðSE
i Þ
�1 h2

iþ1 � h2
i

2
,

D ¼
Xn

i¼1

ðSE
i Þ
�1 h3

iþ1 � h3
i

3
; F ¼ ðhpþ1 � hpÞðS

E
p Þ
�1d,

and G ¼
h2

pþ1 � h2
p

2
ðSE

p Þ
�1d, ð59Þ

where p is the index of the piezoelectric ply.
We can proceed in the same way with Eq. (19):

D3 ¼ dTðSE
p Þ
�1
ðe0 þ x3KÞ þ ðe

s
33 � dTðSE

p Þ
�1dÞE3. (60)

We can see here that D3 depend on x3, which is incompatible with our starting assumptions. In fact, the
electrical equilibrium given by Eq. (48) cannot be exactly satisfied. However, the piezoelectric layer is thin and
this dependence is weak. We can therefore take as an approximation the average displacement of the electric
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charges in direction x3:

D3 ¼ dTðSEÞ
�1 e0 þ

hpþ1 þ hp

2
K

� �
þ ð�s33 � dTðSEÞ

�1dÞE3. (61)

Our aim is now to study the bending modes of a beam in the plane (x1, x3). For this purpose, we seek
solutions where only the forces in the x1 direction are not equal to zero, what gives

N22 ¼ 0; M22 ¼ 0; N12 ¼ 0 and M12 ¼ 0. (62)

Of course, in the case of most laminates, there are interactions between different directions, and so e22
0 , K22,

e12
0 , and K12 are generally not equal to zero. In fact, the conditions given by Eq. (62) and the constitutive
relations given by Eq. (58) make it possible to calculate these strains in terms of e11

0 , K11, and E3.
In only remains now to solve the following equation:

A22 B22 A23 B23

B22 D22 B23 D23

A32 B32 A33 B33

B32 D32 B33 D33

2
6664

3
7775

�022
K22

�012
K12

2
66664

3
77775 ¼

�A12�011 � B12K11 þ F2E3

�B12�011 �D12K11 þ G2E3

�A13�011 � B13K11 þ F3E3

�B13�011 �D13K11 þ G3E3

2
66664

3
77775. (63)

In this way, we obtain N11 and M11 in terms of �011, K11, and E3:

N11 ¼ AN�011 þ BNK11 � F NE3;

M11 ¼ BM�011 þDMK11 � GME3:

(
(64)

We can proceed in the same way with Eq. (61):

D3 ¼ PD�011 þQDK11 þ JDE3. (65)

Coefficients AN, BN, FN, BM, DM, GM, PD, QD, and JD are numerically calculated.
Let us now determine the differential equation of movement. For this purpose, let us use the dynamical

equilibrium equations given by the Kirchhoff–Love’s plate theory:

N11;1 þN12;2 � lu0
1;tt ¼ 0;

N22;2 þN12;1 � lu0
2;tt ¼ 0;

M11;11 þM22;22 þM12;12 � lu0
3;tt ¼ 0;

8>><
>>: (66)

where l is the surface density:

l ¼
Xn

i¼1

riðhiþ1 � hiÞ. (67)

We seek the solutions for similar frequencies to those occurring in the relatively low frequency bending
modes. Since the angular frequency of the first bending mode is much lower than that of the first axial mode,
we can neglect the inertial forces in directions x1 and x2:

N11;1 þN12;2 ¼ 0;

N22;2 þN12;1 ¼ 0;

M11;11 þM22;22 þM12;12 þ lo2u0
3 ¼ 0:

8><
>: (68)

With the conditions given by Eq. (62), Eq. (68) becomes

N11;1 ¼ 0;

M11;11 þ lo2u0
3 ¼ 0:

(
(69)
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Let us substitute Eq. (64) into Eq. (69):

ANu0
1;11 � BNu0

3;111 � FNE3;1 ¼ 0;

BMu0
1;111 �DMu0

3;1111 � GME3;11 þ lo2u0
3 ¼ 0:

(
(70)

Since we have assumed that E3 does not depend on x1, we obtain

ANu0
1;11 � BNu0

3;111 ¼ 0;

BMu0
1;111 �DMu0

3;1111 þ lo2u0
3 ¼ 0:

(
(71)

Let us note that if the laminate is symmetrical, BN and BM will be equal to zero and Eq. (71) will be
uncoupled (there will be no coupling between flexion and tension). However, in the delaminated zone or in the
piezoelectric zone, dissymmetry is unavoidable.

Let us uncouple the system of equations in Eq. (71) by using the first equation of this system:

u0
1;11 ¼

BN

AN
u0
3;111. (72)

Substituting into the second equation of the system, we obtain

Ru03;1111 � lo2u0
3 ¼ 0, (73)

with

R ¼ DM �
BNBM

AN
. (74)
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